Category: Classification
-
Machine Learning for Classification
Machine Learning for Classification 3. Machine Learning for Classification¶ 3.1 Churn prediction project 3.2 Data preparation 3.3 Setting up the validation framework 3.4 EDA 3.5 Feature importance: Churn rate and risk ratio 3.6 Feature importance: Mutual information 3.7 Feature importance: Correlation 3.8 One-hot encoding 3.9 Logistic regression 3.10 Training logistic regression with Scikit-Learn 3.11 Model…